
7The Journal of The Institute of Telecommunications Professionals • Volume 2 Part 2

Open Source Software in Telcos –
a gentle Tsunami

Dominique Le Foll, Amino Communications, Fulup Ar Foll, Sun Microsystems

so for a long time. Businesses had to learn

to use the strength of Open Source to build

new values for their customers.

Sun Microsystems has done this for

years and more recently, Apple, with their

Mac OS X operating system, have demon -

strated the power of the concept. The value

of commodity software had to be realigned

on account of this new free competition.

Downloading and running the free Open -

Office application suite can still surprise

many people with its quality and capability

(http://www.openoffice.org/).

1st wave : Telcos

infrastructure

Telcos infrastructure software for BSS/OSS

traditionally runs on Solaris and HP-UX –

both of which are Unix derivatives – as

well as their cousin, Linux. By the mid 90s,

most smart engineers trained on Linux.

Further more the quality and coverage of

the Linux free development tools (e.g.

Valgrin http://valgrind.org/info/about.html

or Electric Fence http://directory.fsf.org/

project/ElectricFence/) introduced Linux to

the development lab by the back door. It

simply provided a safer, faster way of

developing a solution.

Technical management, who often did

not know Open Source Software values,

were not long in understanding the power

and the benefit which could be provided by

these tools and started to introduce them in

critical projects. In 2004 the magazine

Billingworld (http://www.billing-

world.com/articles/feature/Open-Source-

Balancing-Innovation-and-Risk.html) inter -

viewed many CTOs (chief technical officers)

involved in telecom software infrastructure

development and revealed how the move to

Open Source was deep but still mostly

invisible.

The industry was in the turmoil of the

end of .com and main motivations were to

accelerate project speed and reduce costs

while keeping long term maintainability.

The most surprising phenomenon was

that customers, including major Tier 1

Telcos, accepted Open Source based

software without difficulty. By tradition Tier

1 Telcos don’t trust anything and have

Many people have not realised that as soon as they connect to the Internet,

the large majority of software frameworks which provide the service are not

owned by any corporation and are actually provided by the Community as

Open Source. The fact that critical software frameworks which are so

important for the world economy are managed by a ruleless system can be

difficult to understand. This article introduces the reader to a definition of

Open Source, why it has been so successful for the Telcos and the

consequences of that change for the industry.

Introduction – a short

history

While Richard Stallmann launched the Free

Software Foundation (OSF) in 1983, pro -

viding the compilers and a set of very use -

ful tools, the OSF movement really became

visible to the public with the arrival, in the

early 90s, of three major projects – Linux,

Apache and Samba.

Students could benefit from free of

charge professional development tools

(Linux, GNU Compiler), IT managers could

solve their Unix / Windows / Mac inter-

connections problems (Samba) and the fast

growing .com industry could ride on the

LAMP (Linux, Apache, MySQL, Perl-PHP-

Python) platform to deploy their infra -

structure at low cost.

Launched in 1995, Apache had passed

the bar of 50% of market share by 1999

and still strongly dominates the world

market of public web servers (see

http://news.netcraft.com/).

From the late 90s to early 2000, some of

the largest commercial software companies

were announcing that Open Source would

never break into real business and critical

applications (http://lxer.com/module/

newswire/view/57261/index.html) while

some Open Source advocates were pre dict -

ing Linux everywhere (http://www.tomw.

net.au/media/20000515.html). Both were

wrong. Open Source and commercial soft -

ware offerings co-exist and are likely to do

Technical management, who

often did not know Open

Source Software values, were

not long in understanding the

power and the benefit which

could be provided by these

tools and started to introduce

them in critical projects.

exten sive test and validation programs.

They realised very quickly that Open Source

based solutions were at least as good, if not

better, than those based on commercial

frameworks. Thorough tests led to the

acceptance of underlying technologies such

as web server (Apache) and database

(MySQL). The use of modern scripting

languages (Python) led to the general

acceptability of other Open Source modules.

In that specific domain, one of the great

value propositions of Open Source was its

independence from the hardware. For the

first time a development team could commit

to a customer to maintain an application for

up to 20 years. As there was full access to

all source code (application framework, OS

and development tools) it was possible to

commit to run the application on hardware

that did not yet exist. This would end the

extra costs and nightmare produced by the

requirement to upgrade from the OS to the

application via the tools chain and the

framework when the inevitable requirement

to upgrade the supporting hardware triggers

in a few years. It would also enable running

critical applications on off-the-shelf lower

cost computers. Google’s success is built on

that concept and in many Telcos numbers

of Sun and HP hardware systems run Linux

OS either directly or in virtualisation to

provide that flexibility.

The second attraction of Open Source

software was its quality and focus on

customer needs. While commercial software

has to add more features every year to

justify the 20% maintenance contract cost,

its alternative Open Source competitors

focus on the actual business needs. The

complexity of the functions added to the

latest commercial office suite can help the

reader to understand this behaviour of the

market.

One of the Open Source mottos is ‘A

software solution is completed when there

is nothing more to take out’. It drove Open

Source to a serious success in the segment

of the software market where ‘nice to

haves’ are unused and are simply additional

risk and maintenance burdens. On many

occasions Open Source software proved to

be more reliable and delivered higher

performance than its commercial counter -

part. In 2000, a monitoring project aiming

at a major Tier 1 Telco in Europe was sal -

vaged by the replacement of the commercial

ORB (message exchange framework) and

Database by free alternatives : OmniORB

http://omniorb.sourceforge.net/ and

MySQL http://www.mysql.com/. The new

free ORB provided the missing resilience to

intercommunication error and the free

Database allowed a twentyfold increase in

the number of managed Alarms per hour.

The acceptance was quicker in Europe

and Asia than in the USA, but the high

quality of some Open Source solutions

broke the resistance on the other side of the

Atlantic very quickly. In 2005, a Tier 1 Telco

requested in a tender that Open Source

solutions should not be offered but sub se -

quently imposed Apache as the main Web

server. Open Source was in and there was

nothing that would alter that reality.

2nd wave : the network

equipment

In the early 90s most Telecom equipment

was structured around Real Time com mer -

cial or bespoke Operating Systems. The

change in the network infrastructure toward

IP as a generic protocol and Ethernet as a

ubiquitous interconnection media forced

major equipment upgrades. The new power

provided by flexible hardware using Field

Programmable Gate Arrays (FPGA)

(http://en.wikipedia.org/wiki/Field-

programmable_gate_array) or Digital Signal

Processors (DSP) (http://en.wikipedia.org/

wiki/Digital_signal_processor) had reduced

the dependence on strict real time software

and opened the use of pseudo real time OS

such as Linux. Linux had full real time

exten sion but it did take quite a while for it

to gain market acceptance and proved

unnecessary for the majority of projects.

Fur ther more at that time most real time

programmers came from an electronic

engineering background and adapting to the

complexity of the Linux framework repre -

sented a big hurdle to jump. However, the

growing complexity of the software estab -

lished a need to create a larger pool of

Open Source Software in Telcos

The Journal of The Institute of Telecommunications Professionals • Volume 2 Part 28

talented engineers who joined the industry,

bringing a strong Linux background.

The first Open Source software pack -

ages to be accepted were the OS (mainly

Linux), some key software components

such as flash files systems, boot loaders,

firewalls and configuration web servers.

Once again, the acceptance of Open

Source arrived via the back door. The use of

Linux and all the associated tools enabled

faster development and provided more

realisable equipment. Linux enforced the use

of a full Memory Management Unit (MMU)

which was mostly ignored by Real Time OS

due to its adjacent complexity on critical

timing control. Once past the hurdle of the

MMU, the code became easier to debug. If

the internal Application Program Interfaces

(API) had been well thought out, cross

development and partial simulation with

separated host and target became possible.

Furthermore finding trained soft ware skills

on Linux prove to be signifi cantly easier than

with dedicated Real Time OS.

Once the new development and test

processes were accepted, return to the old

world became impossible and in a few

years, justifying the use of a dedicated real

time OS became a serious challenge in most

companies. The ubiquitous use of Linux by

large corporations such as Cisco, finalised

the acceptance of the Open Source and

illuminated the way forward.

3rd Wave : the customer

premises equipment

In the early 2000s most customer premises

equipment (CPE) was running on small

CPUs and limited memory (RAM and

Flash). Attempts to use Linux as a micro OS

such as the Micro Linux implementation

(http://www.uclinux.org/) remained mostly

academic exercises.

The push for larger Flash memory in

GSM phones to support cameras – and in

digital cameras to support higher resolution

– changed the memory cost so drastically

that the size of memory issue went away.

At the same time the software complexity in

GSM phones pushed the embedded CPU

manufacturers to integrate full MMU

support in their design. The technical

barrier to Linux was removed and the flow

could not be stopped.

This time the acceptance came by the

front door. CPE manufacturers are driven by

product cost reduction and time to market.

The ‘free’ licences could reduce the overall

production cost by 10% to 20% and the

increasing availability of trained software

developers, together with the reuse of ready

made software modules could advance pro -

ject completion dates by 30%. The adoption

rate was so fast that early adopter Startup

companies had difficulty beating the

response times of the major players such as

Linksys or Netgear. The competitive ad -

vantage of the model is such that having to

republish the source code of their product,

as required by the GNU licence, is not an

issue. See for example Netgear web site

(http://kbserver.netgear.com/kb_web_files/

n101238.asp.).

The CPE in domains where heavy IP

networking is needed such as router, gate -

way or set top boxes is mostly exclus ively

based on Open Source. Very powerful com -

mercial alternatives like WxWork, WinCE or

Symbian are restricted to niche areas driven

by specific features such as Windows appli -

cations compatibility (WinCE) or power

man agement (Symbian) but have failed to

expand outside their niches.

In less than 10 years Linux has grown

from nothing to 50% of market share in the

embedded market. http://www.

linuxdevices.com/articles/AT7065740528.html

How ‘free’ is free Open

Source software?

We all know that there no such thing as a

free lunch. It is important to remember that

Free software is to be understood as in ‘Free

speech’ and not as ‘Free beer’. The total

cost of Open Source software acquisition is

often (but not always) lower than its

commercial counterparts. But this cost is

never nil.

When you decide to ‘buy’ free soft ware,

you need to define your need, hunt the

internet and various forums to find your

best candidates. The general problem is that

none of the existing propositions will do

exactly what you want and tens, or worse

hundreds, will almost cover your need. The

next phase consists of finding the best can -

di date which will cover the need, pro vide

the required quality and offer the desired

flexibility to add the missing functionality.

Once you have made up your mind,

depending on the activity supporting the

selected Open Source module, you can have

amazing support or be completely on your

own. In this phase of the project you need

to apply your best engineering resources to

select the right options and properly predict

the remaining tasks and correctly assess the

associated risks. Software engineers actually

capable of smoothly running this phase on

complex projects are very rare and

command high salaries. Many software

houses specialising in Open Source are now

operating in the market place and can be

used to mitigate risks associated with this

type of work.

Required skills and

engineering talent

It is quite common that teams which have

been correctly delivering projects using a

commercial framework fail with an Open

Source platform. Apart from exceptions

related to major projects (webserver, data -

base, virtualisation, office suite ...) in the

Open Source world, there is almost no

commercial support. In this world where

nothing is hidden (source code is public) it

is easy to get lost in the volume of infor -

mation and nobody will back you up if you

make a wrong step.

The software community generally

states that correcting code is 10 times more

difficult than writing it. When you select an

Open Source framework you will also need

to correct and improve code that you have

not written.

In general the adoption of an Open

Source strategy, will impose requirements to

significantly change the engineering force.

In a nutshell, Open Source based projects

require fewer but smarter engineers. It’s not

uncommon to notice changes of up to 50%

of the engineering group within two years.

To survive in the Open Source world,

Engineers need to be motivated to keep

informed on what’s happening in the com -

munity, spend time investigating, reading

magazines, following mailing groups and be

100% immune to the ‘Not Invented Here’

syndrome.

Practical experience of large projects

(50+ developers) shows that having a

minimum of two solid architects and code

experts is the absolute minimum and will

make the difference between failure and

success. Due to the nature of these experts,

conflict with traditional management is

common. Defining a hierarchical structure

to recognise their critical technical value

without burying them under heavy people

management responsibility must be set up.

Without these precautions, discord will

arise and reduce the chances of success.

Nowhere to hide produces

higher quality

A common surprise is that most Open

Source code is better documented and

better written than much commercial code.

When a developer publishes code to the

Open Community the developer knows that

any search engine can show it to their next

boss (or their colleagues). Worse still it will

still be visible 10 years later. Nobody can

afford not to do it properly if they hope to

survive in the jungle of the Open Source.

Type the name of a programmer you know

well in http://www.google.com/codesearch

and you will understand the high pressure

imposed on programmers for quality in a

world where there is no hiding place.

Secondly, when trying to push a new

project on one of the Open Source portals,

high competition is to be expected. For

example, Sourceforge, one of the most

popular portals, referenced more than 175,000

projects in April 2008 (http://sourceforge.

net). The Open Source echo system imposes

an active selection based on evolution, which

is not that different from Darwin’s concept.

Strong and well-managed projects gain high

support and become stronger until a shift in

the community need favours an alternative

architecture - while projects badly designed

are not followed and die very quickly.

A new type of software

company

A new type of software company has been

created around Open Source solutions and

enables an approach which mixes the bene -

fits of the free and paying worlds. Some of

them provide very professional services

which are certainly at the level of the best

Open Source Software in Telcos

The Journal of The Institute of Telecommunications Professionals • Volume 2 Part 2 9

A common surprise is that most

Open Source code is better

documented and better written

than much commercial code.

It is not uncommon to meet

managers who did not take the

time to build it right first time,

but spent the time doing it

twice.

10 The Journal of The Institute of Telecommunications Professionals • Volume 2 Part 2

Open Source Software in Telcos

not have to pay upfront for a licence fee, but

start paying only when they consider their

application critical enough to justify the cost

of support. This reduces the selling cycle to

almost nothing; customers call in when the

application is already in production. They

do not ask for a demonstration, presentation

or a bench mark, ... they ask only for the

cost of support. Furthermore, as customers

pay only when they consider the cost jus ti -

fied, this model never upsets customers. We

have now a cycle where developers down -

load a product, go to production and when

management asks ‘what about support?’

then – and only then – they call back the

vendor. MySQL consider that they make

money on only 1% of the installed base.

This did not prevent Sun spending $1 billion

for its acquisition: http://www.sun.

com/aboutsun/pr/2008-01/sunflash.

20080116.1.xml

How does it work?

Open source software is provided under a

large variety of licence schemes. To be

accepted as a Free Licence by the Open

Software Foundation (http://www.gnu.org/

philosophy/free-sw.html) it has to respect

certain basic principles:

Free software is a matter of the users’

freedom to run, copy, distribute, study,

change and improve the software. More

precisely, it refers to four kinds of freedom,

for the users of the software:

• The freedom to run the program, for

any purpose

completely changes the cycle. Marketing is

done directly by the customer, support is

the shared responsibility of developers’ and

users’ communities and localisation is done

directly by the people who need it, ... the

result is a much shorter development cycle,

better support, and a higher version/

platform/localisation density matrix.

If we take Open Office as an example,

while Sun remains a main contributor to

core development, nevertheless most of the

localisation (e.g.: three Norwegian dialects,

three Celtic languages: Welsh, Breton,

Gaelic, ...) porting and test to non-native

platforms (ex: MacOS), promotion and

branding as well as support is effectively

done by the community. Without the help

of the community Sun would never have

been able to build in only few years a

product that competes with Microsoft Office

Suite. We could say the same thing for

many other products like MySQL, Mozilla,

Apache, Jabber, ... The Open Source model

allows small teams, even when starting late

in well established markets, to compete (ie:

OpenOffice/Microsoft-office, MySQL/Oracle,

Mozilla/IE, Linux/VxWorks, ...)

The selling cycle is another advantage of

Open Source. Big commercial companies

spend a significant part of their income in

sustaining marketing and commercial effort.

Companies like Sun and others – even when

providing only open source software – still

need revenue to pay developers. Many Open

Source oriented companies allow free down -

loads but propose some form of paying

support for whoever needs it. Customers do

traditional commercial offering. MySQL,

Xen, Novell, RedHat or Montavista can be

listed in that category. The main important

difference to notice is that they sell a

service and not a right to use. This makes

the long tails and large deployment of

projects more financially attractive in the

Open Source world.

Other companies provide consultancy in

specific domains like writing drivers, enabl -

ing complex frameworks and can be a valu -

able helper at start-up time.

In Open Source as in the commercial

world, the main risk is to start on the

wrong foot through lack of preparation. It is

not uncommon to meet managers who did

not take the time to build it right first time,

but spent the time doing it twice. With the

lack of constraints and guidance within

Open Source, that risk is even bigger.

A new way of creating and

selling software for

established companies
Quite surprisingly and independently of new

players who build their business natively on

open source, the biggest part of the open

source contribution remains funded by well

established commercial companies. While

Sun chose a very clear software Open

Source strategy a few years ago and became

the first Open Source vendor and contri bu -

tor to the community, other commercial

companies like IBM, Oracle, Novell and

even Microsoft par ti ci pate actively with

communities either to develop new projects

or to improve existing ones.

While many people still do not under -

stand the open source model, it has many

key advantages over traditional software

design. A traditional approach for com mer -

cial software requires you to have many

different teams (marketing, development,

support, sales, QA, documentation, local -

isation, ...), not only all do these people

cost money, but too often they have trouble

understanding one another. Open source

A common misunderstanding is

that if a part of your software

is free, all the software running

beside it will also be free.

11The Journal of The Institute of Telecommunications Professionals • Volume 2 Part 2

Open Source Software in Telcos

an enabling technology, as for example a

file system in an IP Set Top Box (STB), or it

has no value on its own because it is a

required commodity such as a Firewall in a

router.

In the Telco world where software

remains in service for years, about 80% of

the full cost a software project is linked

directly or indirectly to its maintenance.

The main value of using Open Source

blocks is to reduce the maintenance

burden.

If you create a nice file system and you

can convince a large community to use it,

this community will have to maintain it,

helping you to share the burden. If you self

engineer a commodity you will not have a

long advantage over your competitors. If

you succeed in reusing and improving a

commodity you will gain time over your

competitors and raise the market expec -

tation by creating a value for your solution.

Finally, by releasing software back to

the community, companies gain inde pen -

dence from their software developers –

limiting risk in case of conflict. An Open

Source published project will motivate

engineers to deliver high quality code and

more com plete documentation better than

any project leader. Becoming a member of

the club is highly valued and remaining

respected is challenged by the newcomers

every day. The Open Source echo system

produces natural motivation and provides

surprisingly powerful results.

Conclusion

The independence of software in relation to

hardware enables 20 years of support com -

mit ments and the availability of trained

soft ware engineers has opened wide the

doors of all Telcos in the world to accepting

Open Source software.

As the initial acceptance of Open Source

has been gained on operation critical pro -

jects, its widespread acceptance did not

meet strong management resistance.

The main challenge remains the avail -

ability of highly skilled software engineers

who can master the complexity of the solu -

tions offered by the Open Source com mu -

nity and the availability of technical archi -

tects who can organise the integration of

independently developed software blocks.

With the right people, an Open Source

based project is likely to deliver a better,

safer, cheaper solution in a shorter time, but

with the wrong team it will fail to deliver

anything with nobody else to blame but

themselves.

Being your own master as usual is a

privilege and a serious responsibility. Open

source is no different.

• The freedom to study how the program

works, and adapt it to your needs.

Access to the source code is a pre -

condition for this

• The freedom to redistribute copies so

you can help your neighbour

• The freedom to improve the program,

and release your improvements to the

public, so that the whole community

benefits. Access to the source code is a

precondition for this.

A common misunderstanding is that if a

part of your software is free, all the software

running beside it will also be free. This viral

effect, which is much published by some

commercial companies, is generally not

true. Many of the ‘Free’ licences do not

impose a requirement to republish your

code back into the open and the most

commonly used licence (General Public

licence) only requires it in very specific

cases (direct change in the source code or

static link to the code).

The general principle of these licences

is that the initial creator remains the owner

of the creation but leaves the right to the

public to develop it further. If your pro pri -

etary code has to be statically linked to an

Open Source code, then you need to pay

close attention to the original licence. This

risk is bigger with non Linux embedded

software or drivers.

The concept is not limited to software

and is also applied to documentations,

specifications (http://www.homegateway -

initiative.org/publis/index.html) and even

hardware (http://www.sun.com/

processors/opensparc/index.jsp).

Why does it work?

A large part or the software developed for a

project does not represent a real asset for

the company which develops it. Either it is

Dominique Le Foll

holds a Master Degree
in Computer Science
from the French
Military School ESAT.
Before joining Amino
he was a research
engineer for 10 years
on voice and data

switching technologies for the French
Department of Defence and then joined
Acterna-JDSU as architect for service
assurance and test solutions. Over the
course of his career, Dominique has used
disruptive technologies to create diag -
nostic product lines for digital TV, DSL and
ISDN test systems as well as TVoIP and
VoIP. He has architected and engin eered
test and monitoring solutions, which have
been deployed by companies such as DT,
FT, BT, EutelSat, BBC, Verizon, AT&T and
TWC. Dominique has also won several
patents in the US, Europe, and Asia. Cur -
rently he works for Amino Com mu ni -
cations as vice president of engineering,
where he develops solutions for high defi -
nition IPTV that are deployed in many
countries in Europe, the Americas and Asia.

Fulup Ar Foll holds
a Master degree in
Computer Science
from the French
Military School ESAT.
Before joining Sun he
was a research
engineer for 10 years
on distributed tech -

nol ogies for the French Department of
Defence and he taught internet and Java
technologies for six years at South
Brittany University. For Sun he has been
the lead internet architect for many pro -
jects related to European Telecom oper -
ators, as well as for other strong identity
and security infrastructure users such as
banks and governments. In the recent past
he helped France and Norway to move
toward the Liberty Alliance Federated
model. He is currently master architect
inside Sun global software practice and
focuses on high scale federated identity
issues. He represents the Sun software
customer service group inside Liberty
Technology Expert Group standardisation
committee, and inside OMA MWS group
and works as lead architect for major
identity projects on a world-wide level.
He has also been speaker at many
international conferences.

The authors

